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1 Introduction

1.1 Uncertainty Quantification

Computational Fluid Dynamics (CFD) methods have a strong track record of accurate predictions in
applications where the stochastic nature of real-world fluid mechanics problems is not considered. CFD
codes can reliably predict flows with deterministic input parameters and compute quantities of interest
(QoI) for engineers, such as the drag coefficient of an airfoil under infinite flow conditions. However,
there are cases where uncertainties in system behavior are quantifiable and significant. For example,
a slight change in a compressor’s inlet flow angle can have a profound effect on its performance. In
such cases, the engineer needs to consider the probability distribution of the boundary condition for
the inlet flow angle and determine the corresponding probability distribution of the QoI. This process of
propagating input uncertainties to output quantities is known as Uncertainty Quantification (UQ), and
there are various UQ methods available for achieving this goal.

The Monte Carlo technique is widely recognized as the most precise and accurate method for UQ. It
involves sampling by solving the deterministic problem multiple times, randomly selecting stochastic
inputs according to their respective probability distributions. This allows for determining the distribution
of the QoI. However, while the standard Monte Carlo method is accurate, it is often cost-prohibitive
in real-world applications due to the considerable time required for each CFD evaluation, which can
take hours to complete. Additionally, the convergence rate of the method is inversely proportional to
the square root of the number of samples 1/

√
N, further adding to the computational expense. The

Quasi Monte Carlo method is an alternative approach that utilizes quasi-random sequences of uncertain
inputs, which share some properties of random sequences used in standard Monte Carlo. This results
in a convergence rate proportional to (logN)8/N, (Morokoff & Caflisch, 1995). McKay developed another
sampling technique called Latin Hypercube Sampling, as mentioned in (McKay, 1992). In this method,
the samples taken must satisfy specific constraints, which allows for sampling to be independent of the
number of uncertain variables. Despite these improvements, stochastic sampling techniques, including
Latin Hypercube Sampling, are still not considered cost-effective for CFD applications and are primarily
limited to other fields such as computational finance.

The Method of Moments, also known as the Perturbation method, is an approach that approximates
the QoI by employing its Taylor Expansion in terms of the uncertain input variables, around their mean
values (Xiu, 2010). Typically, the expansion is truncated up to the second order, and the moments
of the QoI are approximated directly from the moments of the truncated expansion. This method is
valid for small input and output variations. However, a higher order truncation scheme can be applied
(Papoutsis-Kiachagias, Papadimitriou, & Giannakoglou, 2012), and the statistical moments of the out-
puts are expressed as functions of their derivatives with respect to the uncertain variables, allowing for
a more accurate approximation of the QoI in the presence of larger input and output variations.

Stochastic Collocation methods rely on interpolation schemes to compute stochastic quantities. Various
types of interpolation schemes, such as piecewise linear or Lagrange interpolation, have been adopted
for approximating the QoI (Ganapathysubramanian & Zabaras, 2007; Eldred, 2009; Xiu, 2009). The
interpolation is constructed by sampling the QoI at a set of nodes in the stochastic space of the uncertain
variables. The crucial aspect in this approach is the selection of nodes, as they need to be carefully
chosen to ensure that the obtained approximation is accurate enough, while keeping the number of
samples manageable in terms of computational cost.

In spectral methods, the QoI is approximated using basis functions that capture the spectral charac-
teristics of the uncertain inputs. The Polynomial Chaos Expansion (PCE) is a spectral method that
utilizes orthogonal polynomial bases to represent the dependence of the evaluation model’s outputs on
the uncertain variables (Pettersson, Iaccarino, & Nordström, 2015; Knio, Najm, Ghanem, et al., 2001;
Debusschere et al., 2004). This concept was initially introduced by Wiener in (Wiener, 1938) for Gaus-
sian processes in (Xiu & Karniadakis, 2003). PCE methods can be implemented in either an intrusive
or non-intrusive manner, depending on whether software programming is required or not. Non-intrusive
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Polynomial Chaos Expansion (niPCE) offers the advantage of not modifying the CFD code. Instead,
the truncated spectral representation of the QoI is utilized, and the coefficients of the basis functions
of the PCE are determined using existing software as a "black box" approach. This allows for a more
seamless integration of PCE into existing CFD simulations without requiring modifications to the under-
lying code. The orthogonal polynomial basis in PCE allows for the computation of PCE coefficients in
terms of integrals involving the QoI. These integrals are evaluated at Gaussian nodes, resulting in an ef-
ficient method for UQ compared to other methods (Ghisu & Shahpar, 2017). The theoretical background
of PCE has been well-established (Cuneo, Traverso, & Shahpar, 2017) and applied in various studies
(Emory, Iaccarino, & Laskowski, 2016). However, the "Curse of Dimensionality" remains a challenge, as
the number of samples increases exponentially with the number of uncertain variables.

The niPCE method is similar to stochastic collocation, but differs in the choice of basis, which depends
on the Probability Density Functions (PDFs) of the uncertain inputs, as the chosen polynomial basis
is orthogonal with respect to those PDFs. A comparison between niPCE and Stochastic Collocation
can be found in (Eldred & Burkardt, 2009). The curse of dimensionality, which is a main drawback of
niPCE and Stochastic Collocation, has been addressed through various techniques, such as Gauss
Quadrature with sparse Smolyak (Smolyak, 1963) nodes for computing integrals, or a least squares
approach to reduce the number of required samples.

1.2 Robust Design Optimization

The objective function or QoI under uncertainties in the operating/environmental conditions of a system.
The goal of robust design is to create systems that are not significantly affected by expected changes
in the environment, ensuring reliable performance in the presence of uncertainties. While conventional
design/optimization processes aim to minimize the objective function or QoI, robust design optimization
takes into account the uncertainties and seeks to optimize the performance of the system under these
uncertainties.

F = µF + σF , k ε R (1)

where µF represents the mean value and σF represents the variance of the QoI, and k is a user-defined
weight.

Indeed, in the context of Robust Design optimization, stochastic methods such as evolutionary algo-
rithms can be combined with UQ methods to effectively account for uncertainties in the system’s perfor-
mance. The niPCE method, as mentioned in (Liatsikouras, Asouti, Giannakoglou, Pierrot, & Megahed,
2017), can be used as a UQ tool without requiring any software development. The niPCE can be used
to evaluate the objective function or QoI with uncertainties, as represented by Eq. 1, and integrated
with the evolutionary algorithm for shape optimization of systems such as airfoils. Similar approaches
combining UQ methods and stochastic optimization have been presented in other references such as
(Duvigneau, 2007; Papoutsis-Kiachagias et al., 2012; Vigouroux et al., 2021; Ho & Yang, 2012).

Adjoint-based techniques have been developed as an alternative to non-intrusive approaches combined
with stochastic optimization methods, in order to mitigate the increased computational cost associated
with uncertainties. In non-intrusive approaches, a single evaluation of the QoI/objective function can
be more expensive due to the uncertainties involved, and the cost of stochastic optimization methods
is often higher compared to gradient-based methods. Adjoint-based techniques enable the calculation
of gradients that are needed for optimization and/or UQ purposes, which can potentially reduce the
computational cost of the overall process.

2 Methodology

2.1 niPCE Variants
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2.1.1 Multidimensional niPCE

Assuming the QoI, J, depends on the vector of uncertain variables ci , i ∈ [1,M]. According to niPCE, J
can be approximated as

J(~c) ≈
∞∑
i=0

JiHi (~c) (2)

where Hi (~c) present multivariate orthogonal polynomials of the uncertain variables and Ji are their cor-
responding weights. The orthogonality property of the base polynomials Hi (~c) in the niPCE method
means that the following holds for any given pair Hi and Hj of the multivariate orthogonal polynomials of
the uncertain variables

〈Hi (~c),Hj(~c)〉W =

∫
· · ·
∫

Hi (~c)Hj(~c)W (~c)d~c = 〈Hi (~c),Hi (~c)〉W δij (3)

where

W (~c) =
M∏
i=1

wi (ci ) = w1 (c1)w2 (c2) · · ·wM (cM) (4)

is the product of the Probability Density Functions (PDF) wi , i ∈ [1,M] of the uncertain variables and δij
is the Kronecker symbol.

For practical applications, the infinite sum in Eq. 2 is truncated and only a finite number of polynomials
is used. Assuming that the largest polynomial degree maintained is k, then Eq. 2 is rewritten as

J(~c) ≈
Q−1∑
i=0

JiHi (~c) (5)

where Q = (M+k)!
M!k!

. A multidimensional polynomial Hi (~c) of degree m can be defined as the product of
univariate polynomials pil (cl) with a sum of degrees equal to m. Mathematically, this can be expressed
as:

H(~c,m) =
M∏
l=1

pil (cl) (6)

M∑
l=1

il = m (7)

It’s important to note that there are multiple multivariate polynomials of degree m that can be constructed.
Specifically, there are (m+M−1)!

m!−(M−1)!
different combinations that can lead to a multivariate polynomial of de-

gree m. When all these polynomials are combined up to the maximum degree k, it results in the Q

polynomials as retained in Eq. 2. The choice of univariate orthogonal polynomials p depends on the
statistical distribution of the uncertain variables and is typically selected from the Wiener-Askey family
(Xiu & Karniadakis, 2003).

2.2 Continuous adjoint equations

The governing equations of the flow problems solved in the steady- state, incompressible Navier-Stokes
equations coupled with the Spalart-Allmaras turbulence model (Spalart & Allmaras, 1992). Excluding
heat transfer, these are written as,
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Rp =−∂vj
∂xj

=0 (8)

Rv
i =vj

∂vi
∂xj
− ∂

∂xj

[
(ν+)

(
∂vi
∂xj

+
∂vj
∂xi

)]
+
∂p

∂xi
=0 , i = 1, 2(, 3) (9)

R ν̃ =vj
∂ν̃

∂xj
− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

− ν̃ P(ν̃)+ν̃D(ν̃)=0 (10)

where vi are the velocity components, p is the static pressure divided by the constant fluid density,
τij = (ν+νt)

(
∂vi
∂xj

+
∂vj
∂xi

)
and ν and νt = ν̃fv1 are the constant bulk and turbulent viscosities. Eq. 10 is solved

for ν̃ and terms P(ν̃) & D(ν̃) stand for the production and destruction terms, respectively, while the rest of
terms in Eq. 10 are explained in (Spalart & Allmaras, 1992). The above-mentioned mean flow equations
along with the turbulence model equations and their boundary conditions are referred to as the primal
(or state) equations of the optimization problem. The vector of primal variables, U, contains vi , p and the
turbulence model variables.

2.2.1 Introduction of the Adjoint Variables

For the formulation of adjoint method, the starting point is to define augmented function Faug , which is
defined by adding the volume integrals of the state equations, multiplied by the adjoint variables, to J,
namely,

Faug =J+

∫
Ω

(
uiR

v
i +qRp+ν̃aR

ν̃
)
dΩ (11)

where is the computational domain. In Eq. 11, ui stand for the adjoint to the primal velocity components
vi whereas q is the adjoint pressure. The adjoint variables can also be seen as Lagrange multipliers.
Since the residuals of the primal equations must be zero, the value of Faug is identical to that of J. The
derivatives of L with respect to (w.r.t.) the design variables bn, n ∈ [1,N] , yields

δFaug

δbn
=
δJ

δbn
+

∫
Ω

(
ui
δRv

i

δbn
+q

δRp

δbn
+ν̃a

δR ν̃

δbn

)
dΩ (12)

δΦ/δbn is used to denote the total (or material) derivative of an arbitrary quantity Φ (which can be any of
the flow variables or even the residual of the state equations) and represents the total change in Φ by
varying bn.

δΦ

δbn
=
∂Φ

∂bn
+
∂Φ

∂xk

δxk
δbn

(13)

The partial derivative ∂Φ
∂bn

represents only the variation in Φ caused due to changes in the design and
flow variables, by neglecting space deformations.

In order to formulate the adjoint equations, the total derivatives of the primal equations have to be
developed. Since the shape and discretization of Ω depends on bn, the total and spatial derivatives
symbols do not permute but are related through (?, ?),

δ

δbn

(
∂(.)

∂xj

)
=

∂

∂xj

(
δ(.)

δbn

)
−∂(.)

∂xk

∂

∂xj

(
δxk
δbn

)
(14)

A detailed application of Eq. 14 to the incompressible Navier-Stokes equations for laminar flows is
presented in (Kavvadias, Papoutsis-Kiachagias, & Giannakoglou, 2015).

2.2.2 Objective Function Expression and its Differentiation

In this section, two commonly used objective functions are differentiated. The first is the force exerted on
a solid body, projected onto the ri direction (force type objective function), where riare the components
of a user-defined unit vector. This objective function is defined as
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JF =

∫
SW

[(
pδji − τij

)
rj
]
nidS (15)

where SW is the part of the wall surface where the objective function is defined and δji is the Kronecker
symbol. In external aerodynamics, if ri is aligned with the farfield flow velocity, Eq.15 represents the
drag force. JF may also represent lift by appropriately defining ri .

In general, any objective function defined along S can be expressed as

JF =

∫
S

jSdS =

∫
S

jS ,inidS (16)

where jS is the boundary integrand. Differentiating J w.r.t. bn gives

δJF
δbn

=

∫
S

δjS ,i

δbn
nidS+

∫
S

jS ,i
δ(nidS)

δbn
(17)

Since jS ,i = jS ,i (vk , p, τkj), for Eq.15 using the chain rule to develop δjS ,i/δbn yields

δJF
δbn

=

∫
S

∂jS ,i

∂vk
ni
δvk
δbn

dS+

∫
S

∂jS ,i

∂p
ni
δp

δbn
dS+

∫
S

∂jS ,i

∂τkj
ni
δτkj
δbn

dS+

∫
S

jS ,i
δ(nidS)

δbn
(18)

Computing the variations of the flow quantities w.r.t. bn appearing in Eq.18 would lead to a method with
a cost scaling with N. To avoid this, the adjoint approach is developed.

2.2.3 Sensitivity derivatives

After formulating the adjoint PDEs and their boundary conditions, the remaining terms originating from
Eq. 14, along with the last term Eq. 18 and additional terms emerging during the derivation of the
adjoint boundary conditions, give rise to the SD expression, namely

δF

δbn
=

∫
jSW ,i

δ(nidS)

δbn
+

(
−uivj

∂vi
∂xk
−uj

∂p

∂xk
−τ aij

∂vi
∂xk

+ui
∂τij
∂xk

+q
∂vj
∂xk

)
∂

∂xj

(
δxk
δbn

)
d

−
∫
SW

(
−uknk +

∂jSW ,k

∂τlz
nknlnz

)
τij
δ(ninj)

δbn
dS

−
∫
SW

∂jSW ,k

∂τlz
nk lzτij

δ(ij)

δbn
dS

−
∫
SW

∂jSW ,k

∂τlz
nk lzτij

δ(ij)

δbn
dS

−
∫
SW

[
∂jSW ,k

∂τlz
nk(lz + lz)

]
τij
δ(ij)

δbn
dS (19)

where jSW ,i is the part of jS ,i defined along SW , and tI, tII are the two tangential unit vectors along SW ,
forming a local Frenet system with n. In shape optimization, depending on the parameterization used,
∂xk
∂bn

can analytically be computed by differentiating the parameterization equation(s). The first term is
the field integral that includes the grid sensitivities

(
∂xk
∂bn

)
. This term corresponds to the displacement of

the internal nodes of the computational grid due to variations in bn. The computational cost of this term
is potentially very high, as it scales linearly with the number of design variables, n .

3 Results and conclusion
The report highlighted the importance of UQ methods and Robust Design Optimization in addressing
the inherent uncertainties. Two approaches, niPCE and continuous adjoint, were discussed as potential
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solutions to mitigate the computational cost associated with UQ and optimization. niPCE was presented
as a UQ tool that can be used in combination with stochastic optimization methods. niPCE approximates
the QoI using multivariate orthogonal polynomials of uncertain variables, allowing for efficient evaluation
of the objective function in optimization without requiring software development. However, it was noted
that niPCE may have increased computational cost compared to optimization without uncertainties, as
each evaluation of the QoI can be expensive. Continuous adjoint was highlighted as an alternative
approach that allows for the calculation of gradients necessary for optimization and/or UQ purposes.
This method involves the use of adjoint equations to compute sensitivities of the objective function with
respect to design variables, enabling efficient optimization with reduced computational cost compared to
stochastic optimization methods. Continuous adjoint is particularly suitable for gradient-based methods,
which are typically less computationally expensive compared to stochastic optimization methods. Erfan
Farhikhteh (ESR5) combined PCE with an the OpenFOAM-based continuous adjoint solver, where the
QoI is the axial moment of wind turbine blade and the objective function of the optimization problem is a
weighted sum of its mean value and variance, UQ is carried out based on niPCE. The results presented
that the optimized blade objective function increased by 8% with respect to the baseline design.
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